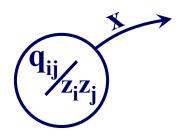
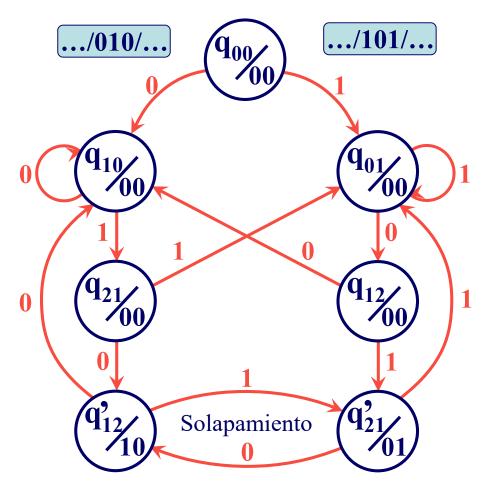


Problema 1. Diagrama de estados. Secuencias.

Obtener el diagrama (grafo) de estados de un detector de la secuencia .../01101/...con solapamiento (c.s.) y sin solapamiento (s.s.).

Solución:



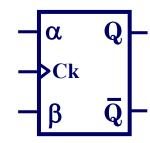

Problema 2. Diagramas de estado

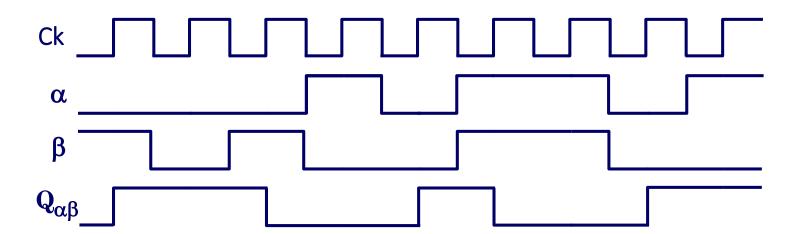
Obtener el grafo de estados de un Autómata de Moore que detecte indistintamente las secuencias .../010/... ó .../101/... con solapamiento, en una secuencia infinita de bits que recibe en serie y sincronizada con la señal de reloj, Ck

Solución:

Los subíndices "i" y "j" se utilizan para indicar el bit que ha llegado hasta ese momento de cada una de las secuencias.

Problema 3. Ecuaciones de próximo estado

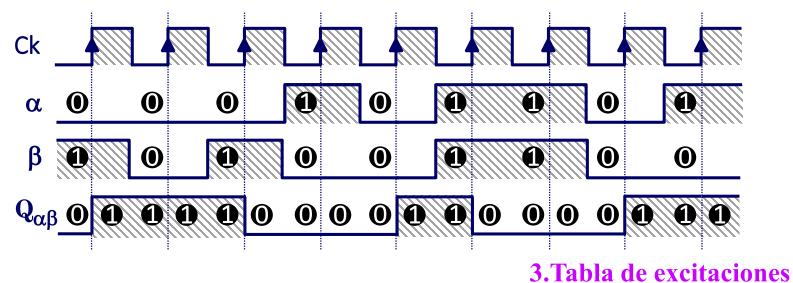

¿Cuál de las ecuaciones de próximo estado dadas corresponde al biestable cuyo funcionamiento se muestra en el siguiente cronograma?

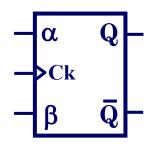

a)
$$\mathbf{Q}_{\alpha\beta}^{t+1} = \alpha \mathbf{Q}_{\alpha\beta}^t + \beta \mathbf{\overline{Q}}_{\alpha\beta}^t$$

$$\mathbf{b}) \mathbf{Q}_{\alpha\beta}^{t+1} = \overline{\alpha} \mathbf{Q}_{\alpha\beta}^{t} + \beta \overline{\mathbf{Q}}_{\alpha\beta}^{t}$$

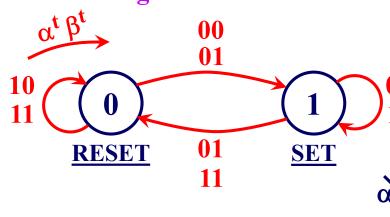
c)
$$\mathbf{Q}_{\alpha\beta}^{t+1} = \alpha \ \mathbf{Q}_{\alpha\beta}^{t} + \overline{\beta} \ \overline{\mathbf{Q}}_{\alpha\beta}^{t}$$

c)
$$\mathbf{Q}_{\alpha\beta}^{t+1} = \alpha \ \mathbf{Q}_{\alpha\beta}^{t} + \overline{\beta} \ \overline{\mathbf{Q}}_{\alpha\beta}^{t}$$
 d) $\mathbf{Q}_{\alpha\beta}^{t+1} = \overline{\alpha} \ \overline{\mathbf{Q}}_{\alpha\beta}^{t} + \overline{\beta} \ \mathbf{Q}_{\alpha\beta}^{t}$





Problema 3. Ecuaciones de próximo estado (Cont.)


Solución:

1. Análisis de cronograma

2.Diagrama de estados

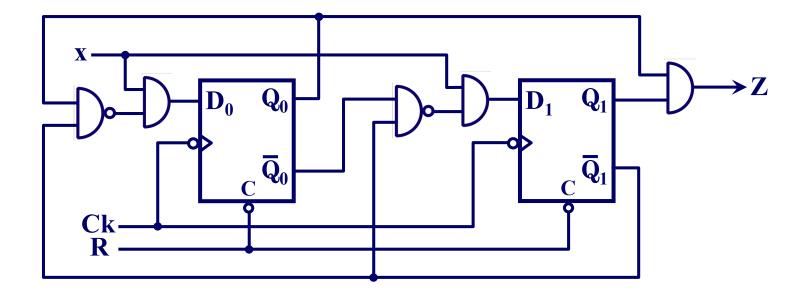
$\beta^{\mathbf{t}}$	$\mathbf{Q^{t+1}}$
0	1
1	$\mathbf{ar{Q}^{t}}$
0	$\mathbf{Q^t}$
1	0
	$\begin{array}{c c} \beta^t \\ \hline 0 \\ 1 \\ \hline 0 \\ 1 \\ \end{array}$

01

11

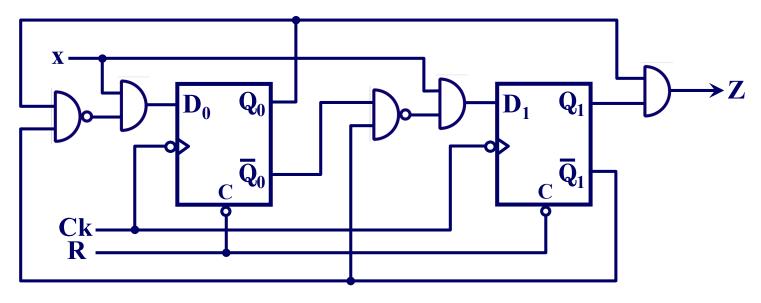
10

$\mathbf{d}) \ \mathbf{Q}_{\alpha\beta}^{t+1} = \overline{\alpha} \ \overline{\mathbf{Q}}_{\alpha\beta}^{t}$	$+ \overline{\beta} Q_{\alpha\beta}^t$
--	--


5. Ecuación de próxim	mo est	ado
-----------------------	--------	-----

4. Tabla de transiciones

	α^t	β^t	$\mathbf{Q}^{\mathbf{t}}$	Q t+1 -
	0	0	0	1
	0	0	1	1
•	0	1	0	1
	0	1	1	0
•	1	0	0	0
	1	0	1	1
•	1	1	0	0
	1	1	1	0 /


Problema 4. Análisis de un circuito secuencial

Analizar el circuito de la figura obteniendo las ecuaciones de salida, de excitación de próximo estado, la tabla de transiciones y el diagrama de estados.

Problema 4. Análisis de un circuito secuencial (Cont.)

Solución:

- **1** Ecuaciones de salida: $Z^t = Q_1^t Q_0^t$
- 1 Ecuaciones de salida: $\mathbf{Z}^t = \mathbf{Q}_1^t \, \mathbf{Q}_0^t$ $\mathbf{D}_1^t = \mathbf{x}^t \, \overline{\mathbf{Q}}_1^t \, \overline{\mathbf{Q}}_0^t = \mathbf{x}^t \, \left(\, \mathbf{Q}_1^t + \mathbf{Q}_0^t \right)$ 2 Ecuaciones de entrada ó excitación: $\mathbf{D}_0^t = \mathbf{x}^t \, \overline{\mathbf{Q}}_1^t \, \mathbf{Q}_0^t = \mathbf{x}^t \, \left(\, \mathbf{Q}_1^t + \overline{\mathbf{Q}}_0^t \right)$ 3 Ecuaciones de próximo estado: $\mathbf{Q}_1^{t+1} = \mathbf{D}_1^t = \mathbf{x}^t \, \left(\, \mathbf{Q}_1^t + \mathbf{Q}_0^t \right)$ $\mathbf{Q}_0^{t+1} = \mathbf{D}_0^t = \mathbf{x}^t \, \left(\, \mathbf{Q}_1^t + \overline{\mathbf{Q}}_0^t \right)$

Problema 4. Análisis de un circuito secuencial (Cont.)

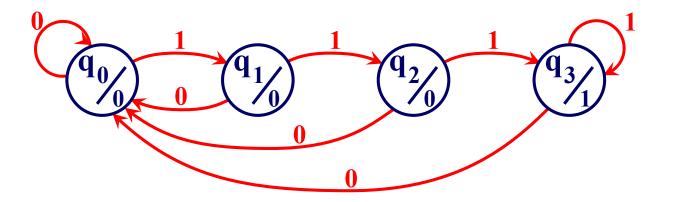
Solución:

4 Tabla de transiciones:

$$Q_{1}^{t+1} = D_{1}^{t} = x^{t} (Q_{1}^{t} + Q_{0}^{t})$$

$$Q_{0}^{t+1} = D_{0}^{t} = x^{t} (Q_{1}^{t} + \overline{Q}_{0}^{t})$$

$$Z^{t} = Q_{1}^{t} Q_{0}^{t}$$


Codificación de estados:

$\mathbf{q^t}$	$\mathbf{Q}_1^{\mathbf{t}}$	$\mathbf{Q_0^t}$	
$egin{array}{c} q_0 \\ q_1 \end{array}$	0	0	ı
$\mathbf{q_1}$	0	1	←
$\mathbf{q_2}$	1	0	
$\mathbf{q_3}$	1	1	

5 Diagrama d	le estados:
--------------	-------------

Detector de la secuencia "111" con solapamiento

x ^t	$\mathbf{Q_1^t}$	$\mathbf{Q_0^t}$	(q ^t)	$\mathbf{Q}_1^{\mathbf{t}+1}$	\mathbf{Q}_0^{t+1}	(q ^{t+1})	$\mathbf{Z^t}$
0	0	0	(q_0)	0	0		0
0	0	1	(q ₁)	0	0	(q_0)	0
0	1	0	(q ₂)	0	0		
0	1	1	(q_3)	0	0	(q ₀) (q ₀)	1
1	0	0	(q_0)	0	1	(q_1)	0
1	0	1	(q ₁)	1	0	(q_2)	0
1	1	0	(q_2)	1	1	(q ₃)	0
1	1	1	(q_3)	1	1	(q_3)	1
			1				•

Problema 5. Conversión de biestables.

Para un biestable M-N, donde $Q^{t+1} = MQ^t + NQ^t$

- a) Obtener su tabla de transiciones, grafo de estados y tabla de excitación.
 - b) Sintetizar con dicho biestable un biestable J-K

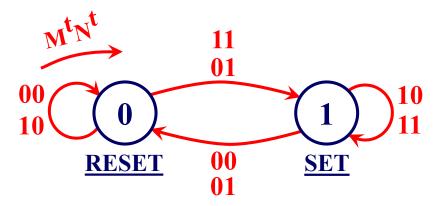

Solución

Tabla verdad

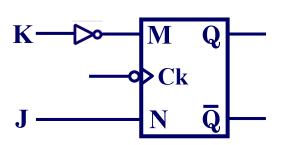
$\mathbf{M}^{\mathbf{t}}$	N ^t	$\mathbf{Q^{t+1}}$
0	0	0
0	1	$ar{\mathbf{Q}^{\mathbf{t}}}$
1	0	$\mathbf{Q^t}$
1	1	1

Tabla de transición

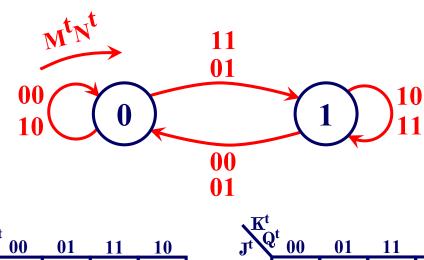
$\mathbf{M^t}$	Nt	$\mathbf{Q^t}$	Q^{t+1}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

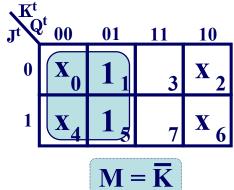
Tabla de excitación

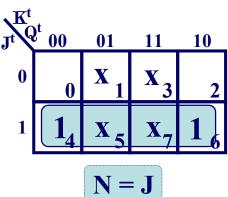
$\mathbf{Q^t}$	$\rightarrow \mathbf{Q^{t+1}}$	M ^t	N
0	$\rightarrow 0$	X	0
0	$\rightarrow 1$	X	1
1	$\rightarrow 0$	0	X
1	$\rightarrow 1$	1	X

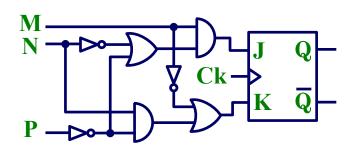

Problema 5. Conversión de biestables.

b) Sintetizar el biestable M-N un biestable J-K


Solución


TV de la lógica de conversión:


J ^t	K ^t	$\mathbf{Q^t}$	Q^{t+1}	$M^t N^t$
0	0	0 –	→ 0	$(1)\mathbf{X} 0$
0	0	1-	→ 1	1 (0) X
0	1	0-	→ 0	$(0)\mathbf{X} 0$
0	1	1-	→ 0	0 (0) X
1	0	0 –	→ 1	(1) X 1
1	0	1-	→ 1	1 (1) \mathbf{X}
1	1	0-	→ 1	(0) x 1
1	1	1-	→ 0	0 (1) \mathbf{X}

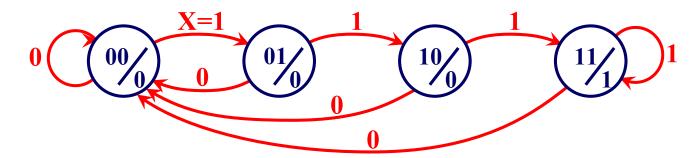


Problema 6. Conversión de biestables.

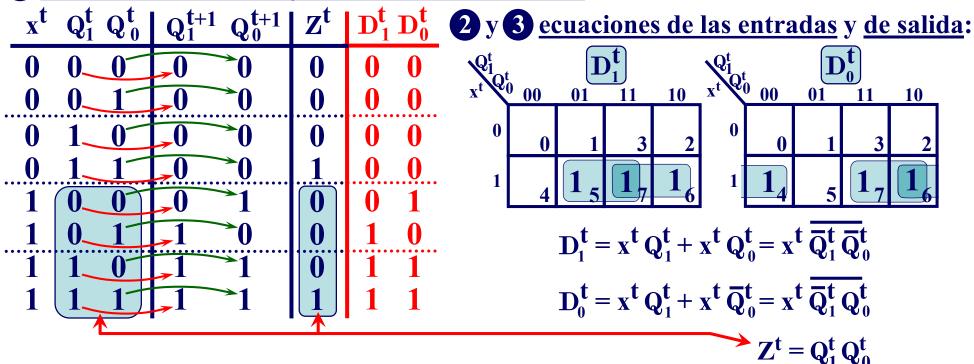
Señale ecuación de próximo estado del biestable MNP de la figura, diseñado a partir de un biestable JK,

entre las siguientes opciones:

$$J = M(\overline{N} + \overline{P}) = M(\overline{N}\overline{P})$$


$$K = \overline{M} + N \overline{P}$$

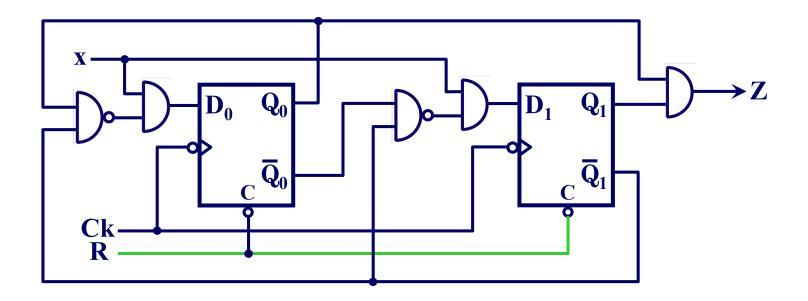
	M	N	P	J	K	Q^{t+1}		M	N	P	Ц	$\mathbf{Q}_{\mathbf{a}}^{t}$		Л	$\mathbf{Q_b^{t}}$		$\mathbf{Q_{c}^{t+}}$
	0	0	0	0	1	0		0	0	0							0
	0	0	1	0	1	0		0	0	1							0
•••	0	1	0	0	1	0	•	0	1	0		V	••••	.	V	••••	0
	0	1	1	0	1	0		0	1	1				.			0
	1	0	0	1	0	1		1	0	0		b			0		1
•	1	0	1	1	0	1		1	0	1		0		.	0		1
	1	1	0	1	1	$oldsymbol{ar{Q}^t}$	·	1	1	0		0			0		$ar{\mathbf{Q}}^{\mathbf{t}}$
	1	1	1	0	0	$\mathbf{Q^t}$		1	1	1		0			0		$ \tilde{\mathbf{o}}^{\mathbf{t}} $


TV de la conversión

Problema 7. Síntesis de un circuito secuencial.

Sintetizar un circuito secuencial con biestables D cuyo diagrama de estados es:

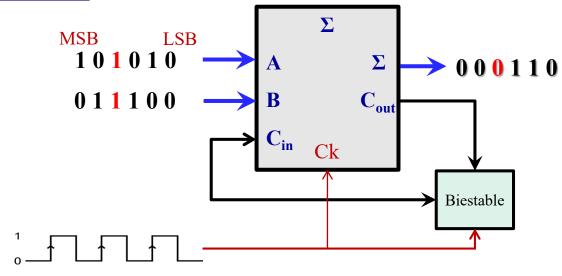
1 Tabla de transiciones y excitación (biestables D):

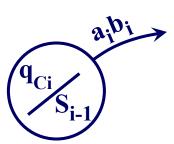


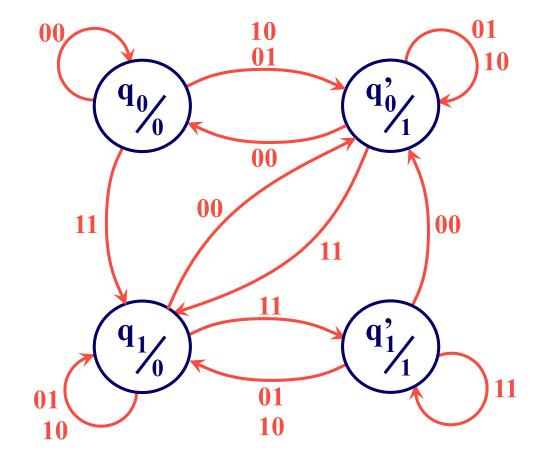
Problema 7. Síntesis de un circuito secuencial (Cont.)

$$\mathbf{D}_{1}^{t} = \mathbf{x}^{t} \mathbf{Q}_{1}^{t} + \mathbf{x}^{t} \mathbf{Q}_{0}^{t} = \mathbf{x}^{t} \overline{\mathbf{Q}}_{1}^{t} \overline{\mathbf{Q}}_{0}^{t}$$

$$\mathbf{D}_{0}^{t} = \mathbf{x}^{t} \mathbf{Q}_{1}^{t} + \mathbf{x}^{t} \overline{\mathbf{Q}}_{0}^{t} = \mathbf{x}^{t} \overline{\mathbf{Q}}_{1}^{t} \mathbf{Q}_{0}^{t}$$

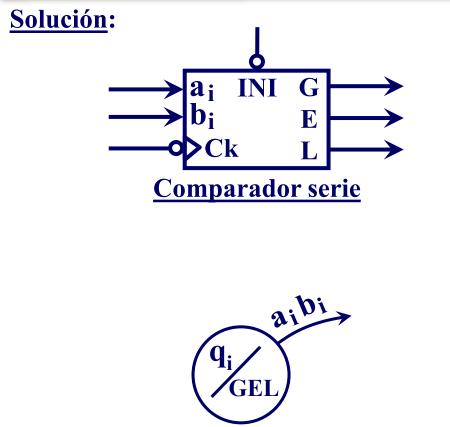

$$\mathbf{Z}^{t} = \mathbf{Q}_{1}^{t} \mathbf{Q}_{0}^{t}$$

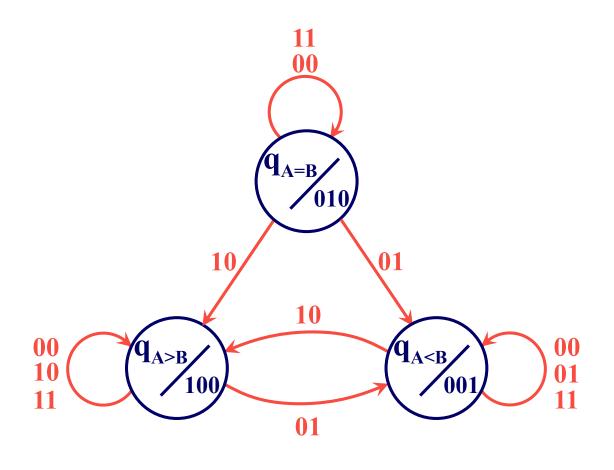

Problema 8. Diagrama de estados. Sumador serie


Obtener el diagrama (grafo) de estados de de un Autómata de Moore correspondiente a un sumador serie que realiza la suma aritmética de dos secuencias binarias de longitud infinita recibidas bit a bit y sincronizadas con la señal de reloj Ck.

Solución:

El autómata debe memorizar el carry generado en cada suma parcial, solo entregará el bit de suma:




Problema 9. Diagrama de estados. Comparador

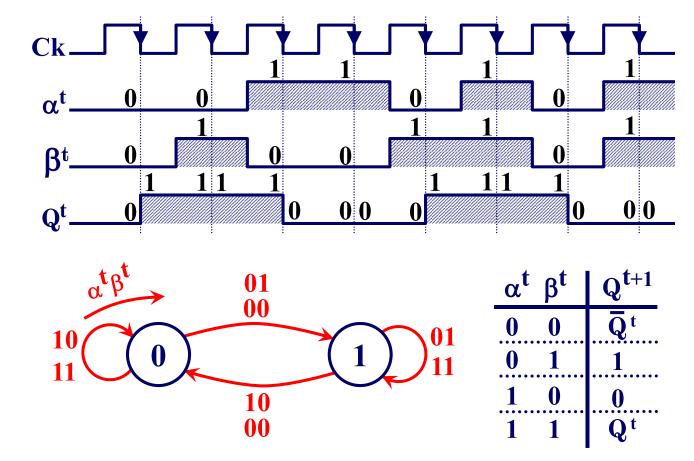
Obtener el diagrama (grafo) de estados de de un Autómata de Moore correspondiente a un comparador de magnitud serie de dos secuencias infinitas de bits, que recibe sincronizadas con la señal de reloj Ck.

Nota:Las secuencias se reciben comenzando por los bits menos significativos

Leyenda

Problema 10. Biestables.

El cronograma adjunto pertenece a un biestable α - β :

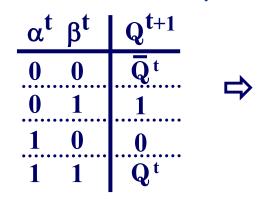


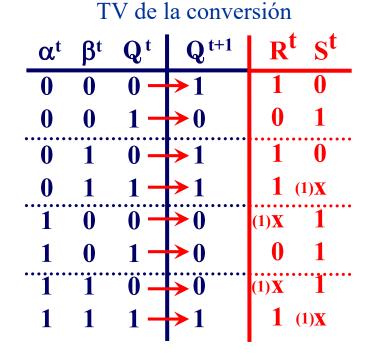
- a) Justifique si se trata o no de un biestable síncrono por flanco (Master/Slave).
- b) ¿Qué detalle del cronograma nos indica si el biestable dispone o no de entradas asíncronas de Preset y Clear?.
- c) Realice el diseño del biestable α - β a partir de un biestable R- S_{NAND} .

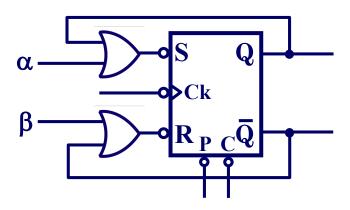
Problema 10. Biestables. (Cont.).

Solución:

- a) En el cronograma se observa que <u>los cambios en las salidas del biestable coinciden con</u> <u>los flancos de bajada de la señal de reloj</u>, por lo tanto, se trata de un biestable síncrono por flanco ó Master/Slave.
- b) Grafo de estados y tabla de transiciones del biestable:




Problema 10. Biestables. (Cont.).


Solución:

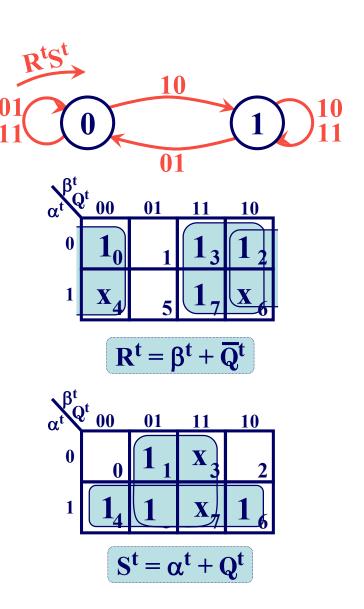
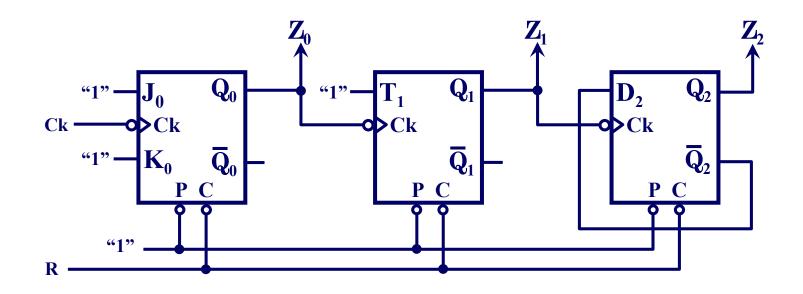
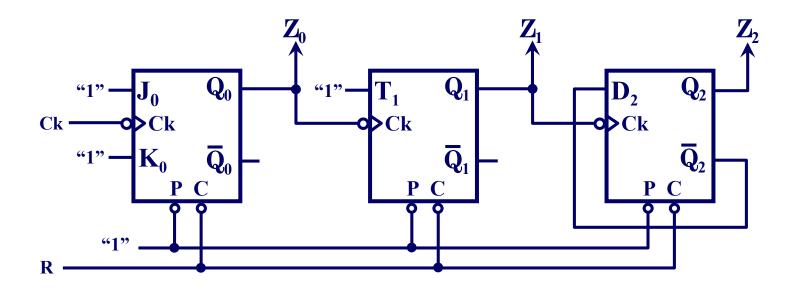

c) Diseño del biestable α-β a partir de un biestable R-S

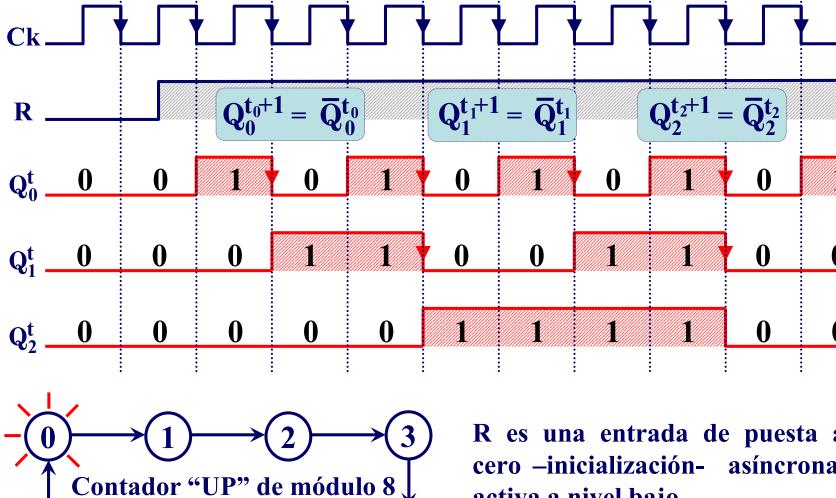
Tabla de transiciones α - β



Problema 11. Análisis de un circuito secuencial.


Obtener el grafo de estados del circuito de la figura, completando para ello el cronograma adjunto:

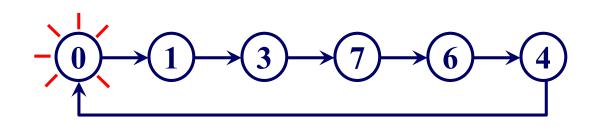
Problema 11. Análisis de un circuito secuencial (cont.).


Solución.

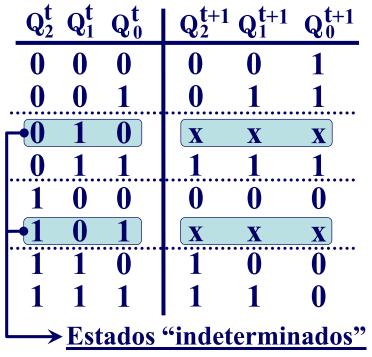
$$\begin{aligned} \mathbf{Q}_{0}^{t_{0}+1} &= \mathbf{Q}_{JK}^{t_{0}+1} = \ \mathbf{J}_{0} \overline{\mathbf{Q}}_{0}^{t_{0}} + \ \overline{\mathbf{K}}_{0} \mathbf{Q}_{0}^{t_{0}} = \mathbf{1} \cdot \overline{\mathbf{Q}}_{0}^{t_{0}} + \ \overline{\mathbf{1}}_{2} \mathbf{Q}_{0}^{t_{0}} = \overline{\mathbf{Q}}_{0}^{t_{0}} \\ \mathbf{Q}_{1}^{t_{1}+1} &= \mathbf{Q}_{T}^{t_{1}+1} = \mathbf{T}_{1} \oplus \ \mathbf{Q}_{1}^{t_{1}} = \mathbf{1} \oplus \ \mathbf{Q}_{1}^{t_{1}} = \overline{\mathbf{Q}}_{1}^{t_{1}} \\ \mathbf{Q}_{2}^{t_{2}+1} &= \mathbf{Q}_{D}^{t_{2}+1} = \mathbf{D}_{2} = \overline{\mathbf{Q}}_{2}^{t_{2}} \end{aligned}$$

Problema 11. Análisis de un circuito secuencial (cont.).

Solución.


R es una entrada de puesta a cero -inicialización- asíncrona, activa a nivel bajo.

Problema 12. Diseño de un circuito secuencial


Diseñar un contador Johnson de 3 bits (con biestables J-K)

Solución.

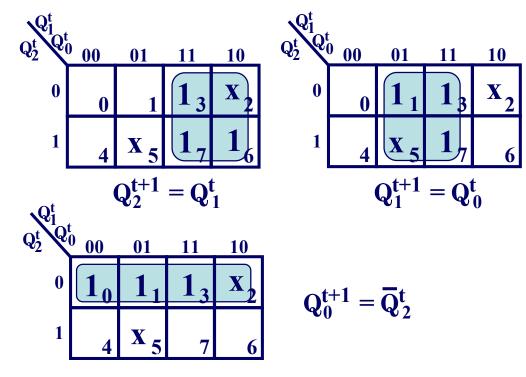
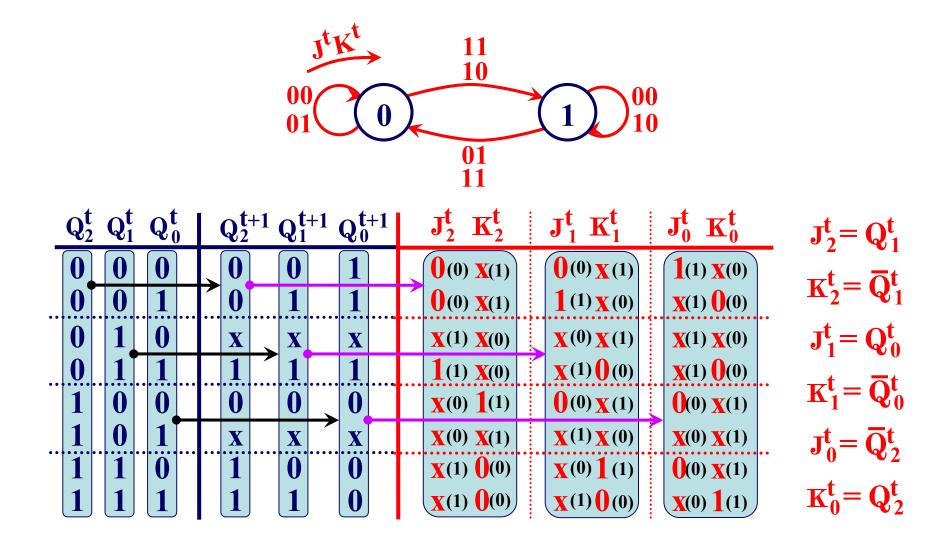
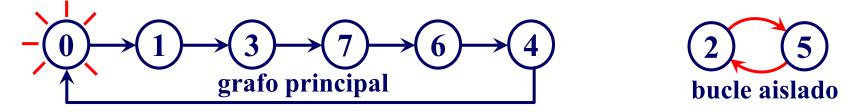

Equivalencia decimal	Código Johnson
0	000
1	001
2	011
3	111
4	110
5	100

Tabla de transiciones



Ecuaciones del siguiente estado

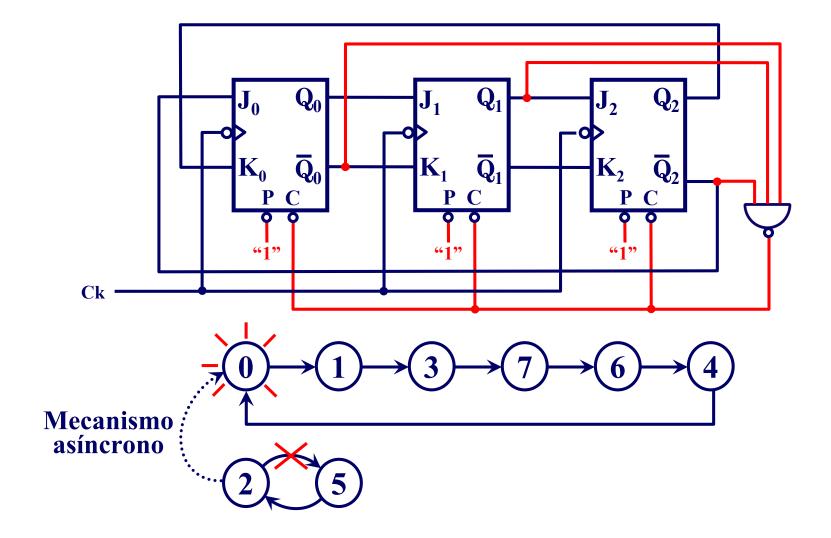
Problema 12. Diseño de un circuito secuencial (Cont.)


Solución. Ecuaciones de las entradas de los tres biestables J-K:

Problema 12. Diseño de un circuito secuencial (Cont.)

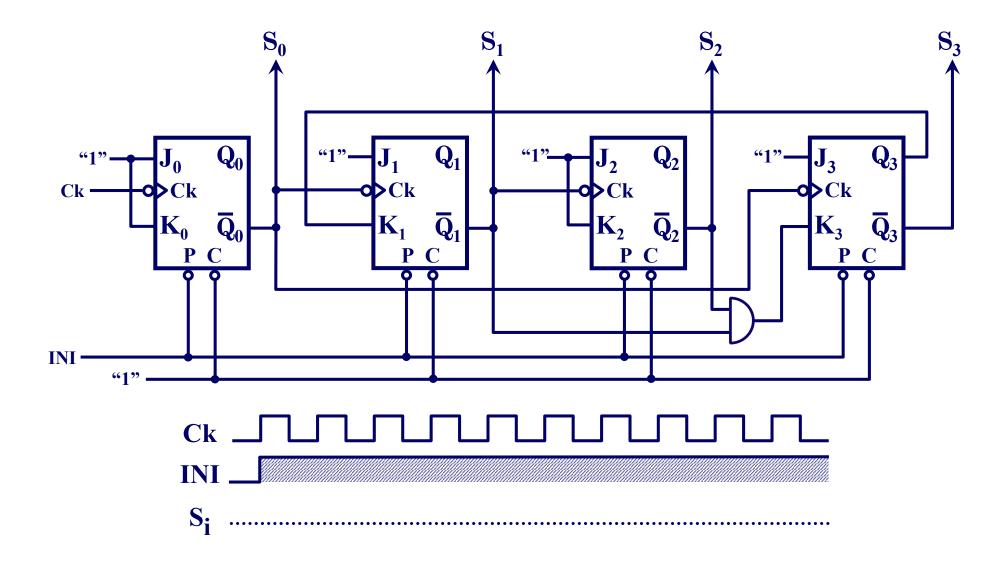
Solución. Estudio de los estados indeterminados:

$$\begin{vmatrix} Q_2^{t+1} = Q_1^t \\ Q_1^{t+1} = Q_0^t \\ Q_0^{t+1} = \bar{Q}_2^t \end{vmatrix} \Rightarrow \begin{vmatrix} Q_2^t & Q_1^t & Q_0^t \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} \begin{vmatrix} Q_2^{t+1} & Q_1^{t+1} & Q_0^{t+1} \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}$$



En la práctica <u>no se deben dejar "bucles aislados" ó "islas de estados" separadas del grafo principal.</u>

¿Alternativas?, se considera esta situación en el momento de obtener la tabla de transiciones, o bien, posteriormente, una vez hecho el diseño, se añade algún mecanismo que detecte si el autómata entra en un bucle o isla y lo enlace automáticamente con el grafo principal.

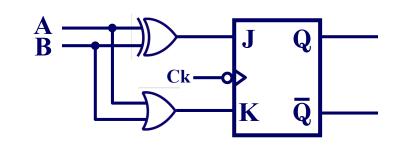

Problema 12. Diseño de un circuito secuencial (Cont.)

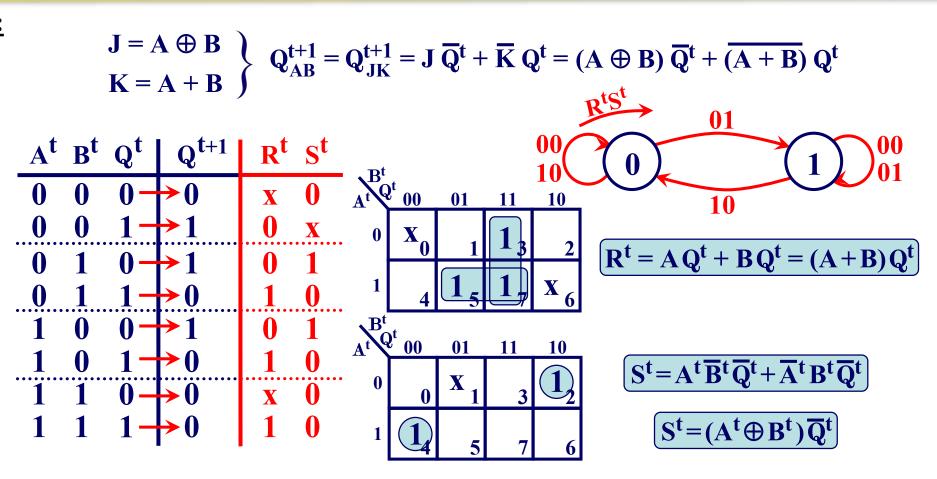
Solución.



Problema 14. Análisis de un circuito secuencial asíncrono

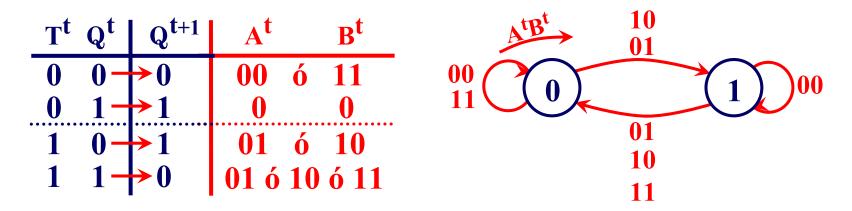
Obtener el grafo de estados del circuito de la figura, completando para ello el cronograma adjunto:


Problema 14. Análisis de un circuito secuencial asíncrono (Cont.).

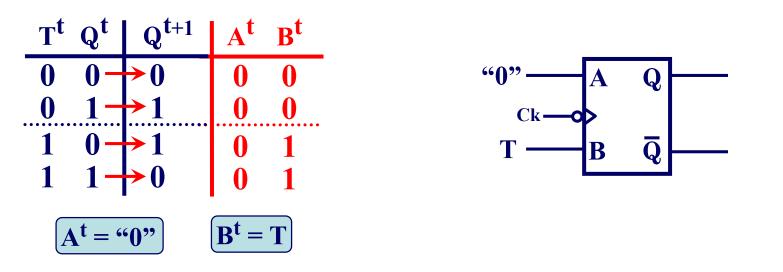

Problema 15. Conversión de biestables

Para el biestable A-B de la figura, diseñado con un J-K:

- a) Sintetizar dicho biestable con un R-S.
- b) Transformar dicho biestable en un T.



Solución a):



Problema 15. Conversión de biestables (Cont.).

Solución b): $A-B \rightarrow T$

De las 12 posibles soluciones, una podría ser:

